REMEMBERING THE CITY LIKE YOU DO

Aslihan Ozturk, Asst. Prof., Karadeniz Technical University, Department of Architecture, ozturkaslihan5@gmail.com

Deniz Bayrak, Dr, Karadeniz Technical University, Department of Architecture, denizbayrak@ktu.edu.tr

Introduction

This project proposal is related to an urban experience museum. The aim is to ensure that visitors are not only passive observers, but actively participate in the exhibition by experiencing their own sensory and emotional memories about the city, and in this way, contribute to the exhibition itself.

Before starting the museum experience, visitors fill out a short digital survey consisting of multiple-choice and one open-ended question. These questions are about the feelings visitors have towards the city, the places they remember, tastes, sounds, smells, textures, and personal memories. At the end of the survey, there is also a question asking whether they want their data to be saved in the museum's memory archive. If they respond positively, the stories created from their data will be saved anonymously, contributing to a shared urban memory pool.

After completing the survey, each visitor receives a small digital identity device (such as an RFID wristband) to carry throughout the exhibition. This allows the system to recognize which survey the visitor completed and offer personalized content accordingly. The exhibition space will include fixed elements such as architectural models, 3D visuals, urban imagery, various textures and fabrics, as well as sound and scent-based experiences. In addition to these static reference points, LED screens, empty walls, and projection surfaces will also be integrated into the space. In this way, the city — as a shared public space — will be transformed into a personalized experience. On the screens and projections, visuals generated by artificial intelligence based on the visitor's sensory survey responses will be displayed. These images will reflect personal memories, emotions, and experiences shared by the individual before the visit. As a result, each visitor will have the opportunity to live their own unique city story. Ultimately, visitors will not only be passive observers but also active contributors who help shape and personalize the exhibition itself.

Even though the exhibition includes common representations of the city (sculptures, models, objects), the most original part comes from the Al-generated content. These

include visuals and sounds that directly reflect the visitor's input. Additionally, the exhibition might include scent-emitting devices, releasing smells such as sea, moss, dampness, flowers, trees, or wood, matched to the visitor's memory data. This turns the exhibition into a fully personalized, sensory journey.

Visitors not only experience their own stories, but they also become contributors to the exhibition. Their inputs shape the exhibition space in real time. The museum changes based on who is inside it.

Literature Review

Projects developed at the intersection of art and artificial intelligence (AI) position technology not merely as a tool, but as a transformative medium for cultural representation, participation, and storytelling.

In Brooklyn, Stephanie Dinkins' interactive AI installation processes visitors' personal narratives to generate inclusive digital portraits centered on Black and Brown communities (Hellmann, 2025). Similarly, Bolivian-Australian artist Violeta Ayala's AI-powered jaguar, developed during her residency at Mila, engages with visitors through visual and narrative interaction, reviving environmental and cultural memory. According to Ayala, the jaguar not only exemplifies the creative use of early-stage AI but also symbolizes a broader artistic movement (Mousa, 2025).

In the museum context, the Cleveland Museum of Art's ArtLens Gallery fosters deeper engagement with its collection through interactive digital content (Cleveland Museum of Art, n.d.). In India, the Museum of Art & Photography (MAP) introduces a digital persona of artist M. F. Husain through a hologram and chatbot, allowing visitors to interact with a simulated version of the artist (Museum of Art & Photography, n.d.).

At the 2023 Helsinki Biennial, AI algorithms were used to place works from the HAM collection onto a fictional city map, producing a virtual curatorial experience that reconfigures spatial perception (Schaerf, Ballesteros, Bernasconi, Neri, & Negueruela del Castillo, 2023). In Madrid, Medialab Matadero invites public participation through open calls and collective prototyping, promoting collaborative creativity (Medialab Matadero, n.d.). Meanwhile, Dubai's Museum of the Future offers a multi-layered immersive experience that envisions new ways of living, guiding visitors on a journey toward the year 2071 (Museum of the Future, n.d.).

These examples collectively demonstrate that AI in art plays not only an aesthetic role but also acts as a powerful agent for cultural and social transformation. In line with this project proposal, visitors' personal narratives of a space or exhibition will be transformed into AI-generated maps or visuals, allowing the space to be remembered through the lens of individual experience.

Exhibition Experience and Conclusion

Before visitors start exploring the museum, a survey is conducted. The collected data is processed using natural language processing (NLP) and sentiment analysis techniques. Al algorithms perform thematic and emotional grouping; similar experiences and stories are clustered. The visitor's location in the space is tracked by digital identity signals (such as RFID, beacon, etc.), so the relevant content is shown on the correct screen at the right time. This system both personalizes the visitor experience and contributes to the collective memory of the space.

The data collected is processed using natural language processing (NLP) and sentiment analysis techniques. All algorithms perform thematic and emotional grouping; similar experiences and stories are clustered. The visitor's location in the space is tracked by digital identity signals (such as RFID, beacon, etc.), so the relevant content is shown on the correct screen at the right time. This way, the system both personalizes the visitor experience and contributes to the collective memory of the space.

Each visitor is given a digital identity at entry, which tracks their movement in real time within the space. Thus, content (text, images, sound) related to the visitor's current location and connected to their survey data is presented. For example, if a visitor shared a childhood memory before, excerpts from that memory are displayed on screens around a model or sculpture.

Visits are done in small groups (5–10 people) by appointment. This keeps the experience personal and interactive. At the end of the visit, the AI presents selected collective stories from the memory pool, allowing visitors to also experience the city through someone else's perspective. However, due to time limits, visitors are allowed to revisit the exhibition only once more.

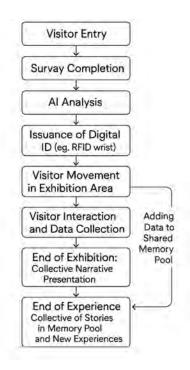


Figure. Research Steps

In summary, integrating AI technologies like natural language processing and real-time tracking significantly enhances museum visitor experiences. By personalizing content based on individual memories and locations, museums create a more engaging and meaningful visit. Additionally, this approach helps build and preserve the collective memory of the space, making the museum a dynamic place that reflects its visitors' stories.

The "Remembering the City Like You" project also combines personal memory with Al-supported analysis and spatial experience, taking the city's collective memory to a new level. This method transforms the visitor from a passive observer into an active co-creator of the experience. Thus, the city and its memory are reimagined as a collective and multi-layered narrative.

References

Cleveland Museum of Art. (n.d.). *ArtLens Gallery*. Cleveland Museum of Art. Retrieved July 29, 2025 from https://www.clevelandart.org/artlens-gallery

Hellmann, M. (2025, 23 July). 'Pretty revolutionary': a Brooklyn exhibit interrogates white-dominated AI to make it more inclusive. The Guardian. Retrieved July 30, 2025 from

https://www.theguardian.com/artanddesign/2025/jul/23/stephanie-dinkins-ai-race-black-white-technology

Medialab Matadero. (n.d.). XenoShow. Medialab Matadero. Retrieved July 28, 2025 from https://www.medialab-matadero.es/en/activities/xenovisual-studies-center

Mousa, D. (2025, 19 June). All art residencies are trying to change the conversation around artificial art. The Verge. Retrieved 29 July, 2025 from https://www.theverge.com/ai-artificial-intelligence/689693/ai-art-residencies-get-artists-using-generative-tech

Museum of Art & Photography. (n.d.). *The AI Husain Experience*. Museum of Art & Photography. Retrieved July 30, 2025 from https://map-india.org/the-ai-husain-experience/

Museum of the Future. (n.d.). Museum of the Future. Museum of the Future. Retrieved July 29, 2025 from https://museumofthefuture.ae/en

Schaerf, L., Ballesteros, P., Bernasconi, V., Neri, I., & Negueruela del Castillo, D. (2023). Al Art Curation: Re-imagining the city of Helsinki in occasion of its Biennial (arXiv preprint arXiv:2306.03753v4). arXiv. https://doi.org/10.48550/arXiv.2306.03753